	1 1			
USN				

Seventh Semester B.E. Degree Examination, Feb./Mar.2022 **Neural Networks**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

		y 2 fine questions, enousing ONL fun question from each mo	uuie.					
1	a. b.	Module-1 Define convex sets, convex hulls and linear separability with relevant diagrams. Explain learning algorithms in neural network.						
2	a. b.	OR State and explain the EX-OR problem and explain how to overcome it. Draw and explain architectural graph of multilayer perceptron with two hidden la	(10 Marks) yers. (10 Marks)					
3	a. b.	$\frac{\text{Module-2}}{\text{Discuss }\alpha\text{-least mean square learning algorithm.}}$ Derive the expression for back propagation learning algorithm.	(10 Marks) (10 Marks)					
4	a. b.	OR Explain how LMS is used for noise cancellation. Discuss µ-LMS Approximate Gradient descent.	(10 Marks) (10 Marks)					
5	a. b.	Write a note on statistical learning algorithm. Illustrate how support vector machine is used for image classification.	(10 Marks) (10 Marks)					
6	a. b.	OR Illustrate how Radial Basis function is applied for face recognition. Explain briefly supervised learning of centers.	(10 Marks) (10 Marks)					
7	a. b.	Module-4 Describe Associative memory model with relevant diagram. With a neat architectural diagram, explain the relaxation procedure in Boltzman	(10 Marks) n machine. (10 Marks)					
8	a. b.	OR Explain Hop field auto associative memory architecture. Explain linear associative memory.	(10 Marks) (10 Marks)					
9	a.	Module-5 Explain the concept of dimensionality reduction using principal component analys	is. (10 Marks)					
	b.	Write a note on growing Neural Gas algorithm.	(10 Marks)					
	OR							
10	a.	Discuss unsupervised vector quantization algorithm.	(10 Marks) (10 Marks)					
	b.	Discuss any two applications of SOM.						

* * * *